Decomposition methods based on projected gradient for network equilibrium problems
نویسندگان
چکیده
In this work we consider the symmetric network equilibrium problem formulated as convex minimization problem whose variables are the path flows. In order to take into account the difficulties related to the large dimension of real network problems we adopt a column generation strategy and we employ a gradient projection method within an inexact decomposition framework. We present a general decomposition algorithm model and we derive several specific algorithms for network equilibrium problems. Global convergence results are established. Computational experiments performed on medium-large dimension problems show the validity and the effectiveness of the proposed approach.
منابع مشابه
A Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملA MPBSG Technique Based Parallel Dual-Type Method Used for Solving Distributed Optimal Power Flow Problems
In this paper, we propose a method to solve the distributed optimal power flow problem and discuss the associated implementation. We have combined this method with a projected Jacobi (PJ) method and a modified parallel block scaled gradient (MPBSG) method possessing decomposition effects. With the decomposition, our method can be parallel processed and is computationally efficient. We have test...
متن کاملFast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees
Optimization problems with rank constraints arise in many applications, including matrix regression, structured PCA, matrix completion and matrix decomposition problems. An attractive heuristic for solving such problems is to factorize the low-rank matrix, and to run projected gradient descent on the nonconvex factorized optimization problem. The goal of this problem is to provide a general the...
متن کاملProjected-gradient algorithms for generalized equilibrium seeking in Aggregative Games are preconditioned Forward-Backward methods
We show that projected-gradient methods for the distributed computation of generalized Nash equilibria in aggregative games are preconditioned forward-backward splitting methods applied to the KKT operator of the game. Specifically, we adopt the preconditioned forward-backward design, recently conceived by Yi and Pavel in the manuscript “A distributed primal-dual algorithm for computation of ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011